Dual Transformer for Point Cloud Analysis

نویسندگان

چکیده

Following the tremendous success of transformer in natural language processing and image understanding tasks, this paper, we present a novel point cloud representation learning architecture, named Dual Transformer Network (DTNet), which mainly consists Point Cloud (DPCT) module. Specifically, by aggregating well-designed point-wise channel-wise multi-head self-attention models simultaneously, DPCT module can capture much richer contextual dependencies semantically from perspective position channel. With as fundamental component, construct DTNet for performing analysis an end-to-end manner. Extensive quantitative qualitative experiments on publicly available benchmarks demonstrate effectiveness our proposed framework tasks 3D classification segmentation, achieving highly competitive performance comparison with state-of-the-art approaches.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comprehensive Analysis of Dense Point Cloud Filtering Algorithm for Eliminating Non-Ground Features

Point cloud and LiDAR Filtering is removing non-ground features from digital surface model (DSM) and reaching the bare earth and DTM extraction. Various methods have been proposed by different researchers to distinguish between ground and non- ground in points cloud and LiDAR data. Most fully automated methods have a common disadvantage, and they are only effective for a particular type of surf...

متن کامل

Scalar Field Analysis over Point Cloud Data

Given a real-valued function f defined over some metric space X, is it possible to recover some structural information about f from the sole information of its values at a finite set L ⊆ X of sample points, whose locations are only known through their pairwise distances in X? We provide a positive answer to this question. More precisely, taking advantage of recent advances on the front of stabi...

متن کامل

TerraMobilita/iQmulus urban point cloud analysis benchmark

The object of the TerraMobilita/iQmulus 3D urban analysis benchmark is to evaluate the current state of the art in urban scene analysis from mobile laser scanning (MLS) at large scale. A very detailed semantic tree for urban scenes is proposed. We call analysis the capacity of a method to separate the points of the scene into these categories (classification), and to separate the different obje...

متن کامل

Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area

Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...

متن کامل

SO-Net: Self-Organizing Network for Point Cloud Analysis

This paper presents SO-Net, a permutation invariant architecture for deep learning with orderless point clouds. The SO-Net models the spatial distribution of point cloud by building a Self-Organizing Map (SOM). Based on the SOM, SO-Net performs hierarchical feature extraction on individual points and SOM nodes, and ultimately represents the input point cloud by a single feature vector. The rece...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Multimedia

سال: 2022

ISSN: ['1520-9210', '1941-0077']

DOI: https://doi.org/10.1109/tmm.2022.3198318